
7. Linear Transformations

If V and W are vector spaces, a function T : V →W is a rule that assigns to each vector v in V a uniquely
determined vector T (v) in W . As mentioned in Section 2.2, two functions S : V →W and T : V →W

are equal if S(v) = T (v) for every v in V . A function T : V →W is called a linear transformation if
T (v+ v1) = T (v)+T (v1) for all v, v1 in V and T (rv) = rT (v) for all v in V and all scalars r. T (v) is
called the image of v under T . We have already studied linear transformation T : Rn → Rm and shown
(in Section 2.6) that they are all given by multiplication by a uniquely determined m× n matrix A; that
is T (x) = Ax for all x in Rn. In the case of linear operators R2 → R2, this yields an important way to
describe geometric functions such as rotations about the origin and reflections in a line through the origin.

In the present chapter we will describe linear transformations in general, introduce the kernel and
image of a linear transformation, and prove a useful result (called the dimension theorem) that relates the
dimensions of the kernel and image, and unifies and extends several earlier results. Finally we study the
notion of isomorphic vector spaces, that is, spaces that are identical except for notation, and relate this to
composition of transformations that was introduced in Section 2.3.

7.1 Examples and Elementary Properties

Definition 7.1 Linear Transformations of Vector Spaces

V W

T

v T (v)

If V and W are two vector spaces, a function T : V →W is called
a linear transformation if it satisfies the following axioms.

T1. T (v+v1) = T (v)+T (v1) for all v and v1 in V .
T2. T (rv) = rT (v) for all v in V and r in R.

A linear transformation T : V → V is called a linear operator on V . The situation can be
visualized as in the diagram.

Axiom T1 is just the requirement that T preserves vector addition. It asserts that the result T (v+v1)
of adding v and v1 first and then applying T is the same as applying T first to get T (v) and T (v1) and
then adding. Similarly, axiom T2 means that T preserves scalar multiplication. Note that, even though the
additions in axiom T1 are both denoted by the same symbol +, the addition on the left forming v+v1 is
carried out in V , whereas the addition T (v)+T (v1) is done in W . Similarly, the scalar multiplications rv

and rT (v) in axiom T2 refer to the spaces V and W , respectively.

We have already seen many examples of linear transformations T : Rn→ Rm. In fact, writing vectors
in Rn as columns, Theorem 2.6.2 shows that, for each such T , there is an m× n matrix A such that
T (x) = Ax for every x in Rn. Moreover, the matrix A is given by A =

[
T (e1) T (e2) · · · T (en)

]

where {e1, e2, . . . , en} is the standard basis of Rn. We denote this transformation by TA : Rn → Rm,
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376 Linear Transformations

defined by
TA(x) = Ax for all x in Rn

Example 7.1.1 lists three important linear transformations that will be referred to later. The verification
of axioms T1 and T2 is left to the reader.

Example 7.1.1

If V and W are vector spaces, the following are linear transformations:

Identity operator V →V 1V : V →V where 1V (v) = v for all v in V

Zero transformation V →W 0 : V →W where 0(v) = 0 for all v in V

Scalar operator V →V a : V →V where a(v) = av for all v in V

(Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for any spaces V and W . It
was also used earlier to denote the zero function [a, b]→ R.

The next example gives two important transformations of matrices. Recall that the trace tr A of an
n×n matrix A is the sum of the entries on the main diagonal.

Example 7.1.2

Show that the transposition and trace are linear transformations. More precisely,

R : Mmn→Mnm where R(A) = AT for all A in Mmn

S : Mmn→ R where S(A) = tr A for all A in Mnn

are both linear transformations.

Solution. Axioms T1 and T2 for transposition are (A+B)T = AT +BT and (rA)T = r(AT ),
respectively (using Theorem 2.1.2). The verifications for the trace are left to the reader.

Example 7.1.3

If a is a scalar, define Ea : Pn→ R by Ea(p) = p(a) for each polynomial p in Pn. Show that Ea is a
linear transformation (called evaluation at a).

Solution. If p and q are polynomials and r is in R, we use the fact that the sum p+q and scalar
product rp are defined as for functions:

(p+q)(x) = p(x)+q(x) and (rp)(x) = rp(x)

for all x. Hence, for all p and q in Pn and all r in R:

Ea(p+q) = (p+q)(a) = p(a)+q(a) = Ea(p)+Ea(q), and

Ea(rp) = (rp)(a) = rp(a) = rEa(p).

Hence Ea is a linear transformation.
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The next example involves some calculus.

Example 7.1.4

Show that the differentiation and integration operations on Pn are linear transformations. More
precisely,

D : Pn→ Pn−1 where D [p(x)] = p′(x) for all p(x) in Pn

I : Pn→ Pn+1 where I [p(x)] =

∫ x

0
p(t)dt for all p(x) in Pn

are linear transformations.

Solution. These restate the following fundamental properties of differentiation and integration.

[p(x)+q(x)]′ = p′(x)+q′(x) and [rp(x)]′ = (rp)′(x)

∫ x
0 [p(t)+q(t)]dt =

∫ x
0 p(t)dt+

∫ x
0 q(t)dt and

∫ x
0 rp(t)dt = r

∫ x
0 p(t)dt

The next theorem collects three useful properties of all linear transformations. They can be described
by saying that, in addition to preserving addition and scalar multiplication (these are the axioms), linear
transformations preserve the zero vector, negatives, and linear combinations.

Theorem 7.1.1

Let T : V →W be a linear transformation.

1. T (0) = 0.

2. T (−v) =−T (v) for all v in V .

3. T (r1v1+ r2v2+ · · ·+ rkvk) = r1T (v1)+ r2T (v2)+ · · ·+ rkT (vk) for all vi in V and all ri in R.

Proof.

1. T (0) = T (0v) = 0T (v) = 0 for any v in V .

2. T (−v) = T [(−1)v] = (−1)T (v) =−T (v) for any v in V .

3. The proof of Theorem 2.6.1 goes through.

The ability to use the last part of Theorem 7.1.1 effectively is vital to obtaining the benefits of linear
transformations. Example 7.1.5 and Theorem 7.1.2 provide illustrations.

Example 7.1.5

Let T : V →W be a linear transformation. If T (v−3v1) = w and T (2v−v1) = w1, find T (v) and
T (v1) in terms of w and w1.
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Solution. The given relations imply that

T (v)−3T (v1) = w

2T (v)−T (v1) = w1

by Theorem 7.1.1. Subtracting twice the first from the second gives T (v1) =
1
5(w1−2w). Then

substitution gives T (v) = 1
5(3w1−w).

The full effect of property (3) in Theorem 7.1.1 is this: If T : V →W is a linear transformation and
T (v1), T (v2), . . . , T (vn) are known, then T (v) can be computed for every vector v in span{v1, v2, . . . , vn}.
In particular, if {v1, v2, . . . , vn} spans V , then T (v) is determined for all v in V by the choice of
T (v1), T (v2), . . . , T (vn). The next theorem states this somewhat differently. As for functions in gen-
eral, two linear transformations T : V →W and S : V →W are called equal (written T = S) if they have
the same action; that is, if T (v) = S(v) for all v in V .

Theorem 7.1.2

Let T : V →W and S : V →W be two linear transformations. Suppose that
V = span{v1, v2, . . . , vn}. If T(vi) = S(vi) for each i, then T = S.

Proof. If v is any vector in V = span{v1, v2, . . . , vn}, write v = a1v1 +a2v2 + · · ·+anvn where each ai

is in R. Since T (vi) = S(vi) for each i, Theorem 7.1.1 gives

T (v) = T (a1v1 +a2v2 + · · ·+anvn)

= a1T (v1)+a2T (v2)+ · · ·+anT (vn)

= a1S(v1)+a2S(v2)+ · · ·+anS(vn)

= S(a1v1 +a2v2 + · · ·+anvn)

= S(v)

Since v was arbitrary in V , this shows that T = S.

Example 7.1.6

Let V = span{v1, . . . , vn}. Let T : V →W be a linear transformation. If T (v1) = · · ·= T (vn) = 0,
show that T = 0, the zero transformation from V to W .

Solution. The zero transformation 0 : V →W is defined by 0(v) = 0 for all v in V (Example 7.1.1),
so T (vi) = 0(vi) holds for each i. Hence T = 0 by Theorem 7.1.2.

Theorem 7.1.2 can be expressed as follows: If we know what a linear transformation T : V →W does
to each vector in a spanning set for V , then we know what T does to every vector in V . If the spanning set
is a basis, we can say much more.
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Theorem 7.1.3

Let V and W be vector spaces and let {b1, b2, . . . , bn} be a basis of V . Given any vectors
w1, w2, . . . , wn in W (they need not be distinct), there exists a unique linear transformation
T : V →W satisfying T (bi) = wi for each i = 1, 2, . . . , n. In fact, the action of T is as follows:
Given v = v1b1 + v2b2 + · · ·+ vnbn in V , vi in R, then

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn.

Proof. If a transformation T does exist with T (bi)=wi for each i, and if S is any other such transformation,
then T (bi) = wi = S(bi) holds for each i, so S = T by Theorem 7.1.2. Hence T is unique if it exists, and
it remains to show that there really is such a linear transformation. Given v in V , we must specify T (v) in
W . Because {b1, . . . , bn} is a basis of V , we have v = v1b1 + · · ·+ vnbn, where v1, . . . , vn are uniquely

determined by v (this is Theorem 6.3.1). Hence we may define T : V →W by

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn

for all v = v1b1 + · · ·+ vnbn in V . This satisfies T (bi) = wi for each i; the verification that T is linear is
left to the reader.

This theorem shows that linear transformations can be defined almost at will: Simply specify where
the basis vectors go, and the rest of the action is dictated by the linearity. Moreover, Theorem 7.1.2 shows
that deciding whether two linear transformations are equal comes down to determining whether they have
the same effect on the basis vectors. So, given a basis {b1, . . . , bn} of a vector space V , there is a different
linear transformation V →W for every ordered selection w1, w2, . . . , wn of vectors in W (not necessarily
distinct).

Example 7.1.7

Find a linear transformation T : P2→M22 such that

T (1+ x) =

[
1 0
0 0

]
, T (x+ x2) =

[
0 1
1 0

]
, and T (1+ x2) =

[
0 0
0 1

]
.

Solution. The set {1+x, x+x2, 1+x2} is a basis of P2, so every vector p = a+bx+cx2 in P2 is a
linear combination of these vectors. In fact

p(x) = 1
2(a+b− c)(1+ x)+ 1

2(−a+b+ c)(x+ x2)+ 1
2(a−b+ c)(1+ x2)

Hence Theorem 7.1.3 gives

T [p(x)] = 1
2(a+b− c)

[
1 0
0 0

]
+ 1

2(−a+b+ c)

[
0 1
1 0

]
+ 1

2(a−b+ c)

[
0 0
0 1

]

= 1
2

[
a+b− c −a+b+ c

−a+b+ c a−b+ c

]
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Exercises for 7.1

Exercise 7.1.1 Show that each of the following func-
tions is a linear transformation.

a. T : R2→ R2; T (x, y) = (x, −y) (reflection in the
x axis)

b. T : R3→R3; T (x, y, z) = (x, y, −z) (reflection in
the x-y plane)

c. T : C→ C; T (z) = z (conjugation)

d. T : Mmn →Mkl; T (A) = PAQ, P a k×m matrix,
Q an n× l matrix, both fixed

e. T : Mnn→Mnn; T (A) = AT +A

f. T : Pn→ R; T [p(x)] = p(0)

g. T : Pn→ R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn→ R; T (x) = x · z, z a fixed vector in Rn

i. T : Pn→ Pn; T [p(x)] = p(x+1)

j. T : Rn → V ; T (r1, · · · , rn) = r1e1 + · · ·+ rnen

where {e1, . . . , en} is a fixed basis of V

k. T : V → R; T (r1e1 + · · · + rnen) = r1, where
{e1, . . . , en} is a fixed basis of V

Exercise 7.1.2 In each case, show that T is not a linear
transformation.

a. T : Mnn→ R; T (A) = det A

b. T : Mnm→ R; T (A) = rank A

c. T : R→ R; T (x) = x2

d. T : V → V ; T (v) = v+ u where u 6= 0 is a fixed
vector in V (T is called the translation by u)

Exercise 7.1.3 In each case, assume that T is a linear
transformation.

a. If T : V → R and T (v1) = 1, T (v2) = −1, find
T (3v1−5v2).

b. If T : V → R and T (v1) = 2, T (v2) = −3, find
T (3v1 +2v2).

c. If T : R2→ R2 and T

[
1
3

]
=

[
1
1

]
,

T

[
1
1

]
=

[
0
1

]
, find T

[
−1

3

]
.

d. If T : R2→ R2 and T

[
1
−1

]
=

[
0
1

]
,

T

[
1
1

]
=

[
1
0

]
, find T

[
1
−7

]
.

e. If T : P2 → P2 and T (x+ 1) = x, T (x− 1) = 1,
T (x2) = 0, find T (2+3x− x2).

f. If T : P2→ R and T (x+2) = 1, T (1) = 5,
T (x2 + x) = 0, find T (2− x+3x2).

Exercise 7.1.4 In each case, find a linear transformation
with the given properties and compute T (v).

a. T : R2→ R3; T (1, 2) = (1, 0, 1),
T (−1, 0) = (0, 1, 1); v = (2, 1)

b. T : R2→ R3; T (2, −1) = (1, −1, 1),
T (1, 1) = (0, 1, 0); v = (−1, 2)

c. T : P2→ P3; T (x2) = x3, T (x+1) = 0,
T (x−1) = x; v = x2 + x+1

d. T : M22→R; T

[
1 0
0 0

]
= 3, T

[
0 1
1 0

]
=−1,

T

[
1 0
1 0

]
= 0 = T

[
0 0
0 1

]
; v =

[
a b

c d

]

Exercise 7.1.5 If T : V → V is a linear transformation,
find T (v) and T (w) if:

a. T (v+w) = v−2w and T (2v−w) = 2v

b. T (v+2w) = 3v−w and T (v−w) = 2v−4w

Exercise 7.1.6 If T : V →W is a linear transformation,
show that T (v− v1) = T (v)− T (v1) for all v and v1 in
V .

Exercise 7.1.7 Let {e1, e2} be the standard basis of R2.
Is it possible to have a linear transformation T such that
T (e1) lies in R while T (e2) lies in R2? Explain your an-
swer.
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Exercise 7.1.8 Let {v1, . . . , vn} be a basis of V and let
T : V →V be a linear transformation.

a. If T (vi) = vi for each i, show that T = 1V .

b. If T (vi) =−vi for each i, show that T =−1 is the
scalar operator (see Example 7.1.1).

Exercise 7.1.9 If A is an m×n matrix, let Ck(A) denote
column k of A. Show that Ck : Mmn → Rm is a linear
transformation for each k = 1, . . . , n.

Exercise 7.1.10 Let {e1, . . . , en} be a basis of Rn.
Given k, 1≤ k ≤ n, define Pk : Rn→ Rn by
Pk(r1e1 + · · ·+ rnen) = rkek. Show that Pk a linear trans-
formation for each k.

Exercise 7.1.11 Let S : V →W and T : V →W be linear
transformations. Given a in R, define functions
(S + T ) : V →W and (aT ) : V →W by (S + T )(v) =
S(v)+ T (v) and (aT )(v) = aT (v) for all v in V . Show
that S+T and aT are linear transformations.

Exercise 7.1.12 Describe all linear transformations
T : R→V .

Exercise 7.1.13 Let V and W be vector spaces, let V

be finite dimensional, and let v 6= 0 in V . Given any
w in W , show that there exists a linear transformation
T : V →W with T (v) = w. [Hint: Theorem 6.4.1 and
Theorem 7.1.3.]

Exercise 7.1.14 Given y in Rn, define Sy : Rn→ R by
Sy(x) = x · y for all x in Rn (where · is the dot product
introduced in Section 5.3).

a. Show that Sy : Rn→ R is a linear transformation
for any y in Rn.

b. Show that every linear transformation T : Rn→R
arises in this way; that is, T = Sy for some y in Rn.
[Hint: If {e1, . . . , en} is the standard basis of Rn,
write Sy(ei) = yi for each i. Use Theorem 7.1.1.]

Exercise 7.1.15 Let T : V →W be a linear transforma-
tion.

a. If U is a subspace of V , show that
T (U)= {T (u) | u in U} is a subspace of W (called
the image of U under T ).

b. If P is a subspace of W , show that
{v in V | T (v) in P} is a subspace of V (called the
preimage of P under T ).

Exercise 7.1.16 Show that differentiation is the only lin-
ear transformation Pn→ Pn that satisfies T (xk) = kxk−1

for each k = 0, 1, 2, . . . , n.

Exercise 7.1.17 Let T : V →W be a linear transforma-
tion and let v1, . . . , vn denote vectors in V .

a. If {T (v1), . . . , T (vn)} is linearly independent,
show that {v1, . . . , vn} is also independent.

b. Find T : R2→ R2 for which the converse of part
(a) is false.

Exercise 7.1.18 Suppose T : V →V is a linear operator
with the property that T [T (v)] = v for all v in V . (For
example, transposition in Mnn or conjugation in C.) If
v 6= 0 in V , show that {v, T (v)} is linearly independent
if and only if T (v) 6= v and T (v) 6=−v.

Exercise 7.1.19 If a and b are real numbers, define
Ta, b : C→C by Ta, b(r+ si) = ra+ sbi for all r+ si in C.

a. Show that Ta, b is linear and Ta, b(z) = Ta, b(z) for
all z in C. (Here z denotes the conjugate of z.)

b. If T : C→ C is linear and T (z) = T (z) for all z in
C, show that T = Ta, b for some real a and b.

Exercise 7.1.20 Show that the following conditions are
equivalent for a linear transformation T : M22→M22.

1. tr [T (A)] = tr A for all A in M22.

2. T

[
r11 r12

r21 r22

]
= r11B11 + r12B12 + r21B21 +

r22B22 for matrices Bi j such that
tr B11 = 1 = tr B22 and tr B12 = 0 = tr B21.

Exercise 7.1.21 Given a in R, consider the evaluation

map Ea : Pn→ R defined in Example 7.1.3.

a. Show that Ea is a linear transformation satisfy-
ing the additional condition that Ea(x

k) = [Ea(x)]
k

holds for all k = 0, 1, 2, . . . . [Note: x0 = 1.]

b. If T : Pn→ R is a linear transformation satisfying
T (xk) = [T (x)]k for all k = 0, 1, 2, . . . , show that
T = Ea for some a in R.
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Exercise 7.1.22 If T : Mnn → R is any linear transfor-
mation satisfying T (AB)= T (BA) for all A and B in Mnn,
show that there exists a number k such that T (A) = k tr A

for all A. (See Lemma 5.5.1.) [Hint: Let Ei j denote the
n× n matrix with 1 in the (i, j) position and zeros else-
where.

Show that EikEl j =

{
0 if k 6= l

Ei j if k = l
. Use this to

show that T (Ei j) = 0 if i 6= j and
T (E11) = T (E22) = · · · = T (Enn). Put k = T (E11) and
use the fact that {Ei j | 1≤ i, j ≤ n} is a basis of Mnn.]

Exercise 7.1.23 Let T : C→ C be a linear transforma-
tion of the real vector space C and assume that T (a) = a

for every real number a. Show that the following are
equivalent:

a. T (zw) = T (z)T (w) for all z and w in C.

b. Either T = 1C or T (z) = z for each z in C (where
z denotes the conjugate).

7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists of all
vectors v in V satisfying the condition that T (v) = 0. The image of T is
often called the range of T and consists of all vectors w in W of the form

w = T (v) for some v in V . These subspaces are depicted in the diagrams.

Example 7.2.1

Let TA : Rn→ Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn. Then

ker TA = {x | Ax = 0}= null A and

im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.
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Theorem 7.2.1

Let T : V →W be a linear transformation.

1. ker T is a subspace of V .

2. im T is a subspace of W .

Proof. The fact that T (0) = 0 shows that ker T and im T contain the zero vector of V and W respectively.

1. If v and v1 lie in ker T , then T (v) = 0 = T (v1), so

T (v+v1) = T (v)+T (v1) = 0+0 = 0

T (rv) = rT (v) = r0 = 0 for all r in R

Hence v+v1 and rv lie in ker T (they satisfy the required condition), so ker T is a subspace of V

by the subspace test (Theorem 6.2.1).

2. If w and w1 lie in im T , write w = T (v) and w1 = T (v1) where v, v1 ∈V . Then

w+w1 = T (v)+T (v1) = T (v+v1)

rw = rT (v) = T (rv) for all r in R

Hence w+w1 and rw both lie in im T (they have the required form), so im T is a subspace of W .

Given a linear transformation T : V →W :

dim (ker T ) is called the nullity of T and denoted as nullity (T )
dim ( im T ) is called the rank of T and denoted as rank (T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A. The two
usages of the word rank are consistent in the following sense. Recall the definition of TA in Example 7.2.1.

Example 7.2.2

Given an m×n matrix A, show that im TA = col A, so rank TA = rank A.

Solution. Write A =
[

c1 · · · cn

]
in terms of its columns. Then

im TA = {Ax | x in Rn}= {x1c1 + · · ·+ xncn | xi in R}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image of a
linear transformation. Here is an example.
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Example 7.2.3

Define a transformation P : Mnn→Mnn by P(A) = A−AT for all A in Mnn. Show that P is linear
and that:

a. ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that a matrix
A lies in ker P just when 0 = P(A) = A−AT , and this occurs if and only if A = AT —that is, A is
symmetric. Turning to part (b), the space im P consists of all matrices P(A), A in Mnn. Every such
matrix is skew-symmetric because

P(A)T = (A−AT )T = AT −A =−P(A)

On the other hand, if S is skew-symmetric (that is, ST =−S), then S lies in im P. In fact,

P
[1

2S
]
= 1

2S−
[1

2S
]T

= 1
2(S−ST ) = 1

2(S+S) = S

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations

Let T : V →W be a linear transformation.

1. T is said to be onto if im T =W .

2. T is said to be one-to-one if T (v) = T (v1) implies v = v1.

A vector w in W is said to be hit by T if w = T (v) for some v in V . Then T is onto if every vector in W

is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the onto transformations
T are those for which im T = W is as large a subspace of W as possible. By contrast, Theorem 7.2.2
shows that the one-to-one transformations T are the ones with ker T as small a subspace of V as possible.

Theorem 7.2.2

If T : V →W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T . Then T (v) = 0, so T (v) = T (0). Hence v = 0

because T is one-to-one. Hence ker T = {0}.
Conversely, assume that ker T = {0} and let T (v) = T (v1) with v and v1 in V . Then

T (v− v1) = T (v)− T (v1) = 0, so v− v1 lies in ker T = {0}. This means that v− v1 = 0, so v = v1,
proving that T is one-to-one.
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Example 7.2.4

The identity transformation 1V : V →V is both one-to-one and onto for any vector space V .

Example 7.2.5

Consider the linear transformations

S : R3→ R2 given by S(x, y, z) = (x+ y, x− y)

T : R2→ R3 given by T (x, y) = (x+ y, x− y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.

Solution. The verification that they are linear is omitted. T is one-to-one because

ker T = {(x, y) | x+ y = x− y = x = 0}= {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because if
(0, 0, 1) = (x+ y, x− y, x) for some x and y, then x+ y = 0 = x− y and x = 1, an impossibility.
Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in ker S. But every
element (s, t) in R2 lies in im S because (s, t) = (x+ y, x− y) = S(x, y, z) for some x, y, and z (in
fact, x = 1

2(s+ t), y = 1
2(s− t), and z = 0). Hence S is onto.

Example 7.2.6

Let U be an invertible m×m matrix and define

T : Mmn→Mmn by T (X) =UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one, let
T (X) = 0. Then UX = 0, so left-multiplication by U−1 gives X = 0. Hence ker T = {0}, so T is
one-to-one. Finally, if Y is any member of Mmn, then U−1Y lies in Mmn too, and
T (U−1Y ) =U(U−1Y ) = Y . This shows that T is onto.

The linear transformations Rn→ Rm all have the form TA for some m×n matrix A (Theorem 2.6.2).
The next theorem gives conditions under which they are onto or one-to-one. Note the connection with
Theorem 5.4.3 and Theorem 5.4.4.
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Theorem 7.2.3

Let A be an m×n matrix, and let TA : Rn→Rm be the linear transformation induced by A, that is
TA(x) = Ax for all columns x in Rn.

1. TA is onto if and only if rank A = m.

2. TA is one-to-one if and only if rank A = n.

Proof.

1. We have that im TA is the column space of A (see Example 7.2.2), so TA is onto if and only if the
column space of A is Rm. Because the rank of A is the dimension of the column space, this holds if
and only if rank A = m.

2. ker TA = {x in Rn | Ax = 0}, so (using Theorem 7.2.2) TA is one-to-one if and only if Ax = 0 implies
x = 0. This is equivalent to rank A = n by Theorem 5.4.3.

The Dimension Theorem

Let A denote an m× n matrix of rank r and let TA : Rn→ Rm denote the corresponding matrix transfor-
mation given by TA(x) = Ax for all columns x in Rn. It follows from Example 7.2.1 and Example 7.2.2
that im TA = col A, so dim ( im TA) = dim (col A) = r. On the other hand Theorem 5.4.2 shows that
dim (ker TA) = dim (null A) = n− r. Combining these we see that

dim ( im TA)+ dim (ker TA) = n for every m×n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem

Let T : V →W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker T )+ dim ( im T )

In other words, dim V = nullity (T )+ rank (T ).

Proof. Every vector in im T =T (V ) has the form T (v) for some v in V . Hence let {T (e1), T (e2), . . . , T (er)}
be a basis of im T , where the ei lie in V . Let {f1, f2, . . . , fk} be any basis of ker T . Then dim ( im T ) = r

and dim (ker T ) = k, so it suffices to show that B = {e1, . . . , er, f1, . . . , fk} is a basis of V .

1. B spans V . If v lies in V , then T (v) lies in im V , so

T (v) = t1T (e1)+ t2T (e2)+ · · ·+ trT (er) ti in R

This implies that v− t1e1− t2e2−·· ·− trer lies in ker T and so is a linear combination of f1, . . . , fk.
Hence v is a linear combination of the vectors in B.
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2. B is linearly independent. Suppose that ti and s j in R satisfy

t1e1 + · · ·+ trer + s1f1 + · · ·+ skfk = 0 (7.1)

Applying T gives t1T (e1)+ · · ·+trT (er) = 0 (because T (fi)= 0 for each i). Hence the independence
of {T (e1), . . . , T (er)} yields t1 = · · ·= tr = 0. But then (7.1) becomes

s1f1 + · · ·+ skfk = 0

so s1 = · · ·= sk = 0 by the independence of {f1, . . . , fk}. This proves that B is linearly independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact, verify-
ing that ker T and im T are both finite dimensional is often an important way to prove that V is finite
dimensional.

Note further that r+ k = n in the proof so, after relabelling, we end up with a basis

B = {e1, e2, . . . , er, er+1, . . . , en}

of V with the property that {er+1, . . . , en} is a basis of ker T and {T (e1), . . . , T (er)} is a basis of im T .
In fact, if V is known in advance to be finite dimensional, then any basis {er+1, . . . , en} of ker T can be
extended to a basis {e1, e2, . . . , er, er+1, . . . , en} of V by Theorem 6.4.1. Moreover, it turns out that, no
matter how this is done, the vectors {T (e1), . . . , T (er)} will be a basis of im T . This result is useful, and
we record it for reference. The proof is much like that of Theorem 7.2.4 and is left as Exercise 7.2.26.

Theorem 7.2.5

Let T : V →W be a linear transformation, and let {e1, . . . , er, er+1, . . . , en} be a basis of V such
that {er+1, . . . , en} is a basis of ker T . Then {T (e1), . . . , T (er)} is a basis of im T , and hence
r = rank T .

The dimension theorem is one of the most useful results in all of linear algebra. It shows that if
either dim (ker T ) or dim ( im T ) can be found, then the other is automatically known. In many cases it is
easier to compute one than the other, so the theorem is a real asset. The rest of this section is devoted to
illustrations of this fact. The next example uses the dimension theorem to give a different proof of the first
part of Theorem 5.4.2.

Example 7.2.7

Let A be an m×n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n− r.

Solution. The space in question is just ker TA, where TA : Rn→Rm is defined by TA(x) = Ax for
all columns x in Rn. But dim ( im TA) = rank TA = rank A = r by Example 7.2.2, so
dim (ker TA) = n− r by the dimension theorem.



388 Linear Transformations

Example 7.2.8

If T : V →W is a linear transformation where V is finite dimensional, then

dim (ker T )≤ dim V and dim ( im T )≤ dim V

Indeed, dim V = dim (ker T )+ dim ( im T ) by Theorem 7.2.4. Of course, the first inequality also
follows because ker T is a subspace of V .

Example 7.2.9

Let D : Pn→ Pn−1 be the differentiation map defined by D [p(x)] = p′(x). Compute ker D and
hence conclude that D is onto.

Solution. Because p′(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since
dim Pn = n+1, the dimension theorem gives

dim ( im D) = (n+1)− dim (ker D) = n = dim (Pn−1)

This implies that im D = Pn−1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn−1 is the derivative of some
polynomial in Pn (simply integrate q(x)!), so the dimension theorem is not needed in this case. However,
in some situations it is difficult to see directly that a linear transformation is onto, and the method used in
Example 7.2.9 may be by far the easiest way to prove it. Here is another illustration.

Example 7.2.10

Given a in R, the evaluation map Ea : Pn→ R is given by Ea [p(x)] = p(a). Show that Ea is linear
and onto, and hence conclude that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of ker Ea, the
subspace of all polynomials p(x) for which p(a) = 0.

Solution. Ea is linear by Example 7.1.3; the verification that it is onto is left to the reader. Hence
dim ( im Ea) = dim (R) = 1, so dim (ker Ea) = (n+1)−1 = n by the dimension theorem. Now
each of the n polynomials (x−a), (x−a)2, . . . , (x−a)n clearly lies in ker Ea, and they are
linearly independent (they have distinct degrees). Hence they are a basis because dim (ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m×n matrix, show that rank A = rank AT A = rank AAT .

Solution. It suffices to show that rank A = rank AT A (the rest follows by replacing A with AT ).
Write B = AT A, and consider the associated matrix transformations

TA : Rn→ Rm and TB : Rn→ Rn
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The dimension theorem and Example 7.2.2 give

rank A = rank TA = dim ( im TA) = n− dim (ker TA)

rank B = rank TB = dim ( im TB) = n− dim (ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that Bx = AT Ax = 0, so ker TA is
contained in ker TB. On the other hand, if Bx = 0, then AT Ax = 0, so

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.

Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for the
kernel and image of TA, and find the rank and nullity of
TA.




1 2 −1 1
3 1 0 2
1 −3 2 0


a.




2 1 −1 3
1 0 3 1
1 1 −4 2


b.




1 2 −1
3 1 2
4 −1 5
0 2 −2


c.




2 1 0
1 −1 3
1 2 −3
0 3 −6


d.

Exercise 7.2.2 In each case, (i) find a basis of ker T ,
and (ii) find a basis of im T . You may assume that T is
linear.

a. T : P2→ R2; T (a+bx+ cx2) = (a, b)

b. T : P2→ R2; T (p(x)) = (p(0), p(1))

c. T : R3→ R3; T (x, y, z) = (x+ y, x+ y, 0)

d. T : R3→ R4; T (x, y, z) = (x, x, y, y)

e. T : M22→M22; T

[
a b

c d

]
=

[
a+b b+ c

c+d d+a

]

f. T : M22→ R; T

[
a b

c d

]
= a+d

g. T : Pn→ R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn→ R; T (r1, r2, . . . , rn) = r1 + r2 + · · ·+ rn

i. T : M22→M22; T (X) = XA−AX , where

A =

[
0 1
1 0

]

j. T : M22→M22; T (X)=XA, where A=

[
1 1
0 0

]

Exercise 7.2.3 Let P : V → R and Q : V → R be lin-
ear transformations, where V is a vector space. Define
T : V → R2 by T (v) = (P(v), Q(v)).

a. Show that T is a linear transformation.

b. Show that ker T = ker P∩ ker Q, the set of vec-
tors in both ker P and ker Q.

Exercise 7.2.4 In each case, find a basis
B = {e1, . . . , er, er+1, . . . , en} of V such that
{er+1, . . . , en} is a basis of ker T , and verify Theo-
rem 7.2.5.

a. T : R3 → R4; T (x, y, z) = (x− y+ 2z, x + y−
z, 2x+ z, 2y−3z)

b. T : R3 → R4; T (x, y, z) = (x + y+ z, 2x− y+
3z, z−3y, 3x+4z)
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Exercise 7.2.5 Show that every matrix X in Mnn has the
form X = AT −2A for some matrix A in Mnn. [Hint: The
dimension theorem.]

Exercise 7.2.6 In each case either prove the statement
or give an example in which it is false. Throughout, let
T : V →W be a linear transformation where V and W are
finite dimensional.

a. If V =W , then ker T ⊆ im T .

b. If dim V = 5, dim W = 3, and dim (ker T ) = 2,
then T is onto.

c. If dim V = 5 and dim W = 4, then ker T 6= {0}.

d. If ker T =V , then W = {0}.

e. If W = {0}, then ker T =V .

f. If W =V , and im T ⊆ ker T , then T = 0.

g. If {e1, e2, e3} is a basis of V and
T (e1) = 0 = T (e2), then dim ( im T )≤ 1.

h. If dim (ker T )≤ dim W , then dim W ≥ 1
2 dim V .

i. If T is one-to-one, then dim V ≤ dim W .

j. If dim V ≤ dim W , then T is one-to-one.

k. If T is onto, then dim V ≥ dim W .

l. If dim V ≥ dim W , then T is onto.

m. If {T (v1), . . . , T (vk)} is independent, then
{v1, . . . , vk} is independent.

n. If {v1, . . . , vk} spans V , then {T (v1), . . . , T (vk)}
spans W .

Exercise 7.2.7 Show that linear independence is pre-
served by one-to-one transformations and that spanning
sets are preserved by onto transformations. More pre-
cisely, if T : V →W is a linear transformation, show that:

a. If T is one-to-one and {v1, . . . , vn} is independent
in V , then {T (v1), . . . , T (vn)} is independent in
W .

b. If T is onto and V = span{v1, . . . , vn}, then
W = span {T (v1), . . . , T (vn)}.

Exercise 7.2.8 Given {v1, . . . , vn} in a vector space V ,
define T : Rn→ V by T (r1, . . . , rn) = r1v1 + · · ·+ rnvn.
Show that T is linear, and that:

a. T is one-to-one if and only if {v1, . . . , vn} is in-
dependent.

b. T is onto if and only if V = span{v1, . . . , vn}.

Exercise 7.2.9 Let T : V →V be a linear transformation
where V is finite dimensional. Show that exactly one of
(i) and (ii) holds: (i) T (v) = 0 for some v 6= 0 in V ; (ii)
T (x) = v has a solution x in V for every v in V .

Exercise 7.2.10 Let T : Mnn→R denote the trace map:
T (A) = tr A for all A in Mnn. Show that
dim (ker T ) = n2−1.

Exercise 7.2.11 Show that the following are equivalent
for a linear transformation T : V →W .

ker T =V1. im T = {0}2.

T = 03.

Exercise 7.2.12 Let A and B be m× n and k× n matri-
ces, respectively. Assume that Ax = 0 implies Bx = 0 for
every n-column x. Show that rank A≥ rank B.
[Hint: Theorem 7.2.4.]

Exercise 7.2.13 Let A be an m× n matrix of rank r.
Thinking of Rn as rows, define V = {x in Rm | xA = 0}.
Show that dim V = m− r.

Exercise 7.2.14 Consider

V =

{[
a b

c d

]∣∣∣∣a+ c = b+d

}

a. Consider S : M22→ R with S

[
a b

c d

]
= a+ c−

b−d. Show that S is linear and onto and that V is
a subspace of M22. Compute dim V .

b. Consider T : V → R with T

[
a b

c d

]
= a + c.

Show that T is linear and onto, and use this in-
formation to compute dim (ker T ).

Exercise 7.2.15 Define T : Pn → R by T [p(x)] = the
sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T ) = n.
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b. Conclude that {x−1, x2−1, . . . , xn−1} is a basis
of ker T .

Exercise 7.2.16 Use the dimension theorem to prove
Theorem 1.3.1: If A is an m× n matrix with m < n, the
system Ax = 0 of m homogeneous equations in n vari-
ables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n× n matrix, and con-
sider the subspaces U = {A | A in Mmn, AB = 0} and
V = {AB | A in Mmn}. Show that dim U + dim V = mn.

Exercise 7.2.18 Let U and V denote, respectively, the
spaces of even and odd polynomials in Pn. Show that
dim U + dim V = n+ 1. [Hint: Consider T : Pn → Pn

where T [p(x)] = p(x)− p(−x).]

Exercise 7.2.19 Show that every polynomial f (x) in
Pn−1 can be written as f (x) = p(x+ 1)− p(x) for some
polynomial p(x) in Pn. [Hint: Define T : Pn→ Pn−1 by
T [p(x)] = p(x+1)− p(x).]

Exercise 7.2.20 Let U and V denote the spaces of sym-
metric and skew-symmetric n× n matrices. Show that
dim U + dim V = n2.

Exercise 7.2.21 Assume that B in Mnn satisfies Bk = 0
for some k ≥ 1. Show that every matrix in Mnn has
the form BA−A for some A in Mnn. [Hint: Show that
T : Mnn→Mnn is linear and one-to-one where
T (A) = BA−A for each A.]

Exercise 7.2.22 Fix a column y 6= 0 in Rn and let
U = {A in Mnn | Ay = 0}. Show that dim U = n(n−1).

Exercise 7.2.23 If B in Mmn has rank r, let U = {A in
Mnn | BA = 0} and W = {BA | A in Mnn}. Show that
dim U = n(n− r) and dim W = nr. [Hint: Show that U

consists of all matrices A whose columns are in the null
space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T : V → V be a linear transforma-
tion where dim V = n. If ker T ∩ im T = {0}, show that
every vector v in V can be written v = u+w for some u

in ker T and w in im T . [Hint: Choose bases B ⊆ ker T

and D⊆ im T , and use Exercise 6.3.33.]

Exercise 7.2.25 Let T : Rn → Rn be a linear operator
of rank 1, where Rn is written as rows. Show that there
exist numbers a1, a2, . . . , an and b1, b2, . . . , bn such that
T (X) = XA for all rows X in Rn, where

A =




a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
anb1 anb2 · · · anbn




[Hint: im T =Rw for w = (b1, . . . , bn) in Rn.]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T :V →R be a nonzero linear trans-
formation, where dim V = n. Show that there is a basis
{e1, . . . , en} of V so that T (r1e1+r2e2+ · · ·+rnen)= r1.

Exercise 7.2.28 Let f 6= 0 be a fixed polynomial of de-
gree m≥ 1. If p is any polynomial, recall that
(p◦ f )(x) = p [ f (x)]. Define Tf : Pn→ Pn+m by
Tf (p) = p◦ f .

a. Show that Tf is linear.

b. Show that Tf is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite dimen-
sional vector space V .

a. Show that U = ker T for some linear operator
T : V →V .

b. Show that U = im S for some linear operator
S : V → V . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.30 Let V and W be finite dimensional vec-
tor spaces.

a. Show that dim W ≤ dim V if and only if there
exists an onto linear transformation T : V →W .
[Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W ≥ dim V if and only if there ex-
ists a one-to-one linear transformation T : V →W .
[Hint: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.2.31 Let A and B be n×n matrices, and as-
sume that AXB= 0, X ∈Mnn, implies X = 0. Show that A

and B are both invertible. [Hint: Dimension Theorem.]
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7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out
to be the same underlying space displayed in different symbols. For example, consider the spaces

R2 = {(a, b) | a, b ∈ R} and P1 = {a+bx | a, b ∈ R}

Compare the addition and scalar multiplication in these spaces:

(a, b)+(a1, b1) = (a+a1, b+b1) (a+bx)+(a1+b1x) = (a+a1)+(b+b1)x

r(a, b) = (ra, rb) r(a+bx) = (ra)+(rb)x

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in R2 to
a+bx, then R2 becomes P1, complete with addition and scalar multiplication. This can be expressed by
noting that the map (a, b) 7→ a+bx is a linear transformation R2→ P1 that is both one-to-one and onto.
In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation T : V →W is called an isomorphism if it is both onto and one-to-one. The
vector spaces V and W are said to be isomorphic if there exists an isomorphism T : V →W , and
we write V ∼=W when this is the case.

Example 7.3.1

The identity transformation 1V : V →V is an isomorphism for any vector space V .

Example 7.3.2

If T : Mmn→Mnm is defined by T (A) = AT for all A in Mmn, then T is an isomorphism (verify).
Hence Mmn

∼= Mnm.

Example 7.3.3

Isomorphic spaces can “look” quite different. For example, M22
∼= P3 because the map

T : M22→ P3 given by T

[
a b

c d

]
= a+bx+ cx2 +dx3 is an isomorphism (verify).

The word isomorphism comes from two Greek roots: iso, meaning “same,” and morphos, meaning
“form.” An isomorphism T : V →W induces a pairing

v↔ T (v)
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between vectors v in V and vectors T (v) in W that preserves vector addition and scalar multiplication.
Hence, as far as their vector space properties are concerned, the spaces V and W are identical except
for notation. Because addition and scalar multiplication in either space are completely determined by the
same operations in the other space, all vector space properties of either space are completely determined
by those of the other.

One of the most important examples of isomorphic spaces was considered in Chapter 4. Let A denote
the set of all “arrows” with tail at the origin in space, and make A into a vector space using the paral-
lelogram law and the scalar multiple law (see Section 4.1). Then define a transformation T : R3→ A by
taking

T




x

y

z


= the arrow v from the origin to the point P(x, y, z).

In Section 4.1 matrix addition and scalar multiplication were shown to correspond to the parallelogram
law and the scalar multiplication law for these arrows, so the map T is a linear transformation. Moreover T

is an isomorphism: it is one-to-one by Theorem 4.1.2, and it is onto because, given an arrow v in A with tip

P(x, y, z), we have T




x

y

z


= v. This justifies the identification v =




x

y

z


 in Chapter 4 of the geometric

arrows with the algebraic matrices. This identification is very useful. The arrows give a “picture” of the
matrices and so bring geometric intuition into R3; the matrices are useful for detailed calculations and so
bring analytic precision into geometry. This is one of the best examples of the power of an isomorphism
to shed light on both spaces being considered.

The following theorem gives a very useful characterization of isomorphisms: They are the linear
transformations that preserve bases.

Theorem 7.3.1

If V and W are finite dimensional spaces, the following conditions are equivalent for a linear
transformation T : V →W .

1. T is an isomorphism.

2. If {e1, e2, . . . , en} is any basis of V , then {T (e1), T (e2), . . . , T (en)} is a basis of W .

3. There exists a basis {e1, e2, . . . , en} of V such that {T (e1), T (e2), . . . , T (en)} is a basis of
W .

Proof. (1) ⇒ (2). Let {e1, . . . , en} be a basis of V . If t1T (e1)+ · · ·+ tnT (en) = 0 with ti in R, then
T (t1e1 + · · ·+ tnen) = 0, so t1e1 + · · ·+ tnen = 0 (because ker T = {0}). But then each ti = 0 by the
independence of the ei, so {T (e1), . . . , T (en)} is independent. To show that it spans W , choose w in
W . Because T is onto, w = T (v) for some v in V , so write v = t1e1 + · · ·+ tnen. Hence we obtain
w = T (v) = t1T (e1)+ · · ·+ tnT (en), proving that {T (e1), . . . , T (en)} spans W .

(2)⇒ (3). This is because V has a basis.

(3)⇒ (1). If T (v) = 0, write v = v1e1 + · · ·+ vnen where each vi is in R. Then

0 = T (v) = v1T (e1)+ · · ·+ vnT (en)
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so v1 = · · ·= vn = 0 by (3). Hence v = 0, so ker T = {0} and T is one-to-one. To show that T is onto, let
w be any vector in W . By (3) there exist w1, . . . , wn in R such that

w = w1T (e1)+ · · ·+wnT (en) = T (w1e1 + · · ·+wnen)

Thus T is onto.

Theorem 7.3.1 dovetails nicely with Theorem 7.1.3 as follows. Let V and W be vector spaces of
dimension n, and suppose that {e1, e2, . . . , en} and {f1, f2, . . . , fn} are bases of V and W , respectively.
Theorem 7.1.3 asserts that there exists a linear transformation T : V →W such that

T (ei) = fi for each i = 1, 2, . . . , n

Then {T (e1), . . . , T (en)} is evidently a basis of W , so T is an isomorphism by Theorem 7.3.1. Further-
more, the action of T is prescribed by

T (r1e1 + · · ·+ rnen) = r1f1 + · · ·+ rnfn

so isomorphisms between spaces of equal dimension can be easily defined as soon as bases are known. In
particular, this shows that if two vector spaces V and W have the same dimension then they are isomorphic,
that is V ∼=W . This is half of the following theorem.

Theorem 7.3.2

If V and W are finite dimensional vector spaces, then V ∼=W if and only if dim V = dim W .

Proof. It remains to show that if V ∼=W then dim V = dim W . But if V ∼=W , then there exists an isomor-
phism T :V →W . Since V is finite dimensional, let {e1, . . . , en} be a basis of V . Then {T (e1), . . . , T (en)}
is a basis of W by Theorem 7.3.1, so dim W = n = dim V .

Corollary 7.3.1

Let U , V , and W denote vector spaces. Then:

1. V ∼=V for every vector space V .

2. If V ∼=W then W ∼=V .

3. If U ∼=V and V ∼=W , then U ∼=W .

The proof is left to the reader. By virtue of these properties, the relation∼= is called an equivalence relation

on the class of finite dimensional vector spaces. Since dim (Rn) = n it follows that

Corollary 7.3.2

If V is a vector space and dim V = n, then V is isomorphic to Rn.
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If V is a vector space of dimension n, note that there are important explicit isomorphisms V → Rn.
Fix a basis B = {b1, b2, . . . , bn} of V and write {e1, e2, . . . , en} for the standard basis of Rn. By
Theorem 7.1.3 there is a unique linear transformation CB : V → Rn given by

CB(v1b1 + v2b2 + · · ·+ vnbn) = v1e1 + v2e2 + · · ·+ vnen =




v1

v2
...

vn




where each vi is in R. Moreover, CB(bi) = ei for each i so CB is an isomorphism by Theorem 7.3.1, called
the coordinate isomorphism corresponding to the basis B. These isomorphisms will play a central role
in Chapter 9.

The conclusion in the above corollary can be phrased as follows: As far as vector space properties
are concerned, every n-dimensional vector space V is essentially the same as Rn; they are the “same”
vector space except for a change of symbols. This appears to make the process of abstraction seem less
important—just study Rn and be done with it! But consider the different “feel” of the spaces P8 and M33

even though they are both the “same” as R9: For example, vectors in P8 can have roots, while vectors in
M33 can be multiplied. So the merit in the abstraction process lies in identifying common properties of
the vector spaces in the various examples. This is important even for finite dimensional spaces. However,
the payoff from abstraction is much greater in the infinite dimensional case, particularly for spaces of
functions.

Example 7.3.4

Let V denote the space of all 2×2 symmetric matrices. Find an isomorphism T : P2→V such that
T (1) = I, where I is the 2×2 identity matrix.

Solution. {1, x, x2} is a basis of P2, and we want a basis of V containing I. The set{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is independent in V , so it is a basis because dim V = 3 (by

Example 6.3.11). Hence define T : P2→V by taking T (1) =

[
1 0
0 1

]
, T (x) =

[
0 1
1 0

]
,

T (x2) =

[
0 0
0 1

]
, and extending linearly as in Theorem 7.1.3. Then T is an isomorphism by

Theorem 7.3.1, and its action is given by

T (a+bx+ cx2) = aT (1)+bT (x)+ cT (x2) =

[
a b

b a+ c

]

The dimension theorem (Theorem 7.2.4) gives the following useful fact about isomorphisms.

Theorem 7.3.3

If V and W have the same dimension n, a linear transformation T : V →W is an isomorphism if it
is either one-to-one or onto.
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Proof. The dimension theorem asserts that dim (ker T )+ dim ( im T ) = n, so dim (ker T ) = 0 if and only
if dim ( im T ) = n. Thus T is one-to-one if and only if T is onto, and the result follows.

Composition

Suppose that T : V →W and S : W →U are linear transformations. They link together as in the diagram
so, as in Section 2.3, it is possible to define a new function V →U by first applying T and then S.

Definition 7.5 Composition of Linear Transformations

T S

V W U

Given linear transformations V
T−→W

S−→U , the composite

ST : V →U of T and S is defined by

ST (v) = S [T (v)] for all v in V

The operation of forming the new function ST is called composition.1

The action of ST can be described compactly as follows: ST means first T then S.

Not all pairs of linear transformations can be composed. For example, if T : V →W and S : W →U

are linear transformations then ST : V →U is defined, but T S cannot be formed unless U = V because
S : W →U and T : V →W do not “link” in that order.2

Moreover, even if ST and T S can both be formed, they may not be equal. In fact, if S : Rm→ Rn and
T : Rn→ Rm are induced by matrices A and B respectively, then ST and T S can both be formed (they are
induced by AB and BA respectively), but the matrix products AB and BA may not be equal (they may not
even be the same size). Here is another example.

Example 7.3.5

Define: S : M22→M22 and T : M22→M22 by S

[
a b

c d

]
=

[
c d

a b

]
and T (A) = AT for

A ∈M22. Describe the action of ST and T S, and show that ST 6= T S.

Solution. ST

[
a b

c d

]
= S

[
a c

b d

]
=

[
b d

a c

]
, whereas

T S

[
a b

c d

]
= T

[
c d

a b

]
=

[
c a

d b

]
.

It is clear that T S

[
a b

c d

]
need not equal ST

[
a b

c d

]
, so T S 6= ST .

The next theorem collects some basic properties of the composition operation.

1In Section 2.3 we denoted the composite as S ◦T . However, it is more convenient to use the simpler notation ST .
2Actually, all that is required is U ⊆V .
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Theorem 7.3.4: 3

Let V
T−→W

S−→U
R−→ Z be linear transformations.

1. The composite ST is again a linear transformation.

2. T 1V = T and 1W T = T .

3. (RS)T = R(ST ).

Proof. The proofs of (1) and (2) are left as Exercise 7.3.25. To prove (3), observe that, for all v in V :

{(RS)T}(v) = (RS) [T (v)] = R{S [T (v)]}= R{(ST )(v)}= {R(ST )}(v)

Up to this point, composition seems to have no connection with isomorphisms. In fact, the two notions
are closely related.

Theorem 7.3.5

Let V and W be finite dimensional vector spaces. The following conditions are equivalent for a
linear transformation T : V →W .

1. T is an isomorphism.

2. There exists a linear transformation S : W →V such that ST = 1V and T S = 1W .

Moreover, in this case S is also an isomorphism and is uniquely determined by T :

If w in W is written as w = T (v), then S(w) = v.

Proof. (1)⇒ (2). If B = {e1, . . . , en} is a basis of V , then D = {T (e1), . . . , T (en)} is a basis of W by
Theorem 7.3.1. Hence (using Theorem 7.1.3), define a linear transformation S : W →V by

S[T (ei)] = ei for each i (7.2)

Since ei = 1V (ei), this gives ST = 1V by Theorem 7.1.2. But applying T gives T [S [T (ei)]] = T (ei) for
each i, so T S = 1W (again by Theorem 7.1.2, using the basis D of W ).

(2)⇒ (1). If T (v) = T (v1), then S [T (v)] = S [T (v1)]. Because ST = 1V by (2), this reads v = v1; that
is, T is one-to-one. Given w in W , the fact that T S = 1W means that w = T [S(w)], so T is onto.

3Theorem 7.3.4 can be expressed by saying that vector spaces and linear transformations are an example of a category. In
general a category consists of certain objects and, for any two objects X and Y , a set mor (X , Y ). The elements α of mor (X , Y )
are called morphisms from X to Y and are written α : X→Y . It is assumed that identity morphisms and composition are defined
in such a way that Theorem 7.3.4 holds. Hence, in the category of vector spaces the objects are the vector spaces themselves and
the morphisms are the linear transformations. Another example is the category of metric spaces, in which the objects are sets
equipped with a distance function (called a metric), and the morphisms are continuous functions (with respect to the metric).
The category of sets and functions is a very basic example.
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Finally, S is uniquely determined by the condition ST = 1V because this condition implies (7.2). S

is an isomorphism because it carries the basis D to B. As to the last assertion, given w in W , write
w = r1T (e1)+ · · ·+ rnT (en). Then w = T (v), where v = r1e1 + · · ·+ rnen. Then S(w) = v by (7.2).

Given an isomorphism T : V →W , the unique isomorphism S : W → V satisfying condition (2) of
Theorem 7.3.5 is called the inverse of T and is denoted by T−1. Hence T : V →W and T−1 : W →V are
related by the fundamental identities:

T−1 [T (v)] = v for all v in V and T
[
T−1(w)

]
= w for all w in W

In other words, each of T and T−1 reverses the action of the other. In particular, equation (7.2) in the proof
of Theorem 7.3.5 shows how to define T−1 using the image of a basis under the isomorphism T . Here is
an example.

Example 7.3.6

Define T : P1→ P1 by T (a+bx) = (a−b)+ax. Show that T has an inverse, and find the action of
T−1.

Solution. The transformation T is linear (verify). Because T (1) = 1+ x and T (x) =−1, T carries
the basis B = {1, x} to the basis D = {1+ x, −1}. Hence T is an isomorphism, and T−1 carries D

back to B, that is,
T−1(1+ x) = 1 and T−1(−1) = x

Because a+bx = b(1+ x)+(b−a)(−1), we obtain

T−1(a+bx) = bT−1(1+ x)+(b−a)T−1(−1) = b+(b−a)x

Sometimes the action of the inverse of a transformation is apparent.

Example 7.3.7

If B = {b1, b2, . . . , bn} is a basis of a vector space V , the coordinate transformation CB : V → Rn

is an isomorphism defined by

CB(v1b1 + v2b2 + · · ·+ vnbn) = (v1, v2, . . . , vn)
T

The way to reverse the action of CB is clear: C−1
B : Rn→V is given by

C−1
B (v1, v2, . . . , vn) = v1b1 + v2b2 + · · ·+ vnbn for all vi in V

Condition (2) in Theorem 7.3.5 characterizes the inverse of a linear transformation T : V →W as the
(unique) transformation S : W →V that satisfies ST = 1V and T S = 1W . This often determines the inverse.
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Example 7.3.8

Define T : R3→ R3 by T (x, y, z) = (z, x, y). Show that T 3 = 1R3 , and hence find T−1.

Solution. T 2(x, y, z) = T [T (x, y, z)] = T (z, x, y) = (y, z, x). Hence

T 3(x, y, z) = T
[
T 2(x, y, z)

]
= T (y, z, x) = (x, y, z)

Since this holds for all (x, y, z), it shows that T 3 = 1R3 , so T (T 2) = 1R3 = (T 2)T . Thus T−1 = T 2

by (2) of Theorem 7.3.5.

Example 7.3.9

Define T : Pn→ Rn+1 by T (p) = (p(0), p(1), . . . , p(n)) for all p in Pn. Show that T−1 exists.

Solution. The verification that T is linear is left to the reader. If T (p) = 0, then p(k) = 0 for
k = 0, 1, . . . , n, so p has n+1 distinct roots. Because p has degree at most n, this implies that
p = 0 is the zero polynomial (Theorem 6.5.4) and hence that T is one-to-one. But
dim Pn = n+1 = dim Rn+1, so this means that T is also onto and hence is an isomorphism. Thus
T−1 exists by Theorem 7.3.5. Note that we have not given a description of the action of T−1, we
have merely shown that such a description exists. To give it explicitly requires some ingenuity; one
method involves the Lagrange interpolation expansion (Theorem 6.5.3).

Exercises for 7.3

Exercise 7.3.1 Verify that each of the following is an
isomorphism (Theorem 7.3.3 is useful).

a. T : R3→ R3; T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R3→ R3; T (x, y, z) = (x, x+ y, x+ y+ z)

c. T : C→ C; T (z) = z

d. T : Mmn →Mmn; T (X) = UXV , U and V invert-
ible

e. T : P1→ R2; T [p(x)] = [p(0), p(1)]

f. T : V → V ; T (v) = kv, k 6= 0 a fixed number, V

any vector space

g. T : M22→ R4; T

[
a b

c d

]
= (a+b, d, c, a−b)

h. T : Mmn→Mnm; T (A) = AT

Exercise 7.3.2 Show that

{a+bx+ cx2, a1 +b1x+ c1x2, a2 +b2x+ c2x2}

is a basis of P2 if and only if
{(a, b, c), (a1, b1, c1), (a2, b2, c2)} is a basis of R3.

Exercise 7.3.3 If V is any vector space, let V n denote the
space of all n-tuples (v1, v2, . . . , vn), where each vi lies
in V . (This is a vector space with component-wise oper-
ations; see Exercise 6.1.17.) If C j(A) denotes the jth col-
umn of the m×n matrix A, show that T : Mmn→ (Rm)n

is an isomorphism if
T (A) =

[
C1(A) C2(A) · · · Cn(A)

]
. (Here Rm con-

sists of columns.)
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Exercise 7.3.4 In each case, compute the action of ST

and T S, and show that ST 6= T S.

a. S : R2 → R2 with S(x, y) = (y, x); T : R2 → R2

with T (x, y) = (x, 0)

b. S : R3→ R3 with S(x, y, z) = (x, 0, z);
T : R3→ R3 with T (x, y, z) = (x+ y, 0, y+ z)

c. S : P2 → P2 with S(p) = p(0) + p(1)x + p(2)x2;
T : P2→ P2 with T (a+bx+ cx2) = b+ cx+ax2

d. S : M22→M22 with S

[
a b

c d

]
=

[
a 0
0 d

]
;

T : M22→M22 with T

[
a b

c d

]
=

[
c a

d b

]

Exercise 7.3.5 In each case, show that the linear trans-
formation T satisfies T 2 = T .

a. T : R4→ R4; T (x, y, z, w) = (x, 0, z, 0)

b. T : R2→ R2; T (x, y) = (x+ y, 0)

c. T : P2→ P2;
T (a+bx+ cx2) = (a+b− c)+ cx+ cx2

d. T : M22→M22;

T

[
a b

c d

]
= 1

2

[
a+ c b+d

a+ c b+d

]

Exercise 7.3.6 Determine whether each of the following
transformations T has an inverse and, if so, determine the
action of T−1.

a. T : R3→ R3;
T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R4→ R4;
T (x, y, z, t) = (x+ y, y+ z, z+ t, t + x)

c. T : M22→M22;

T

[
a b

c d

]
=

[
a− c b−d

2a− c 2b−d

]

d. T : M22→M22;

T

[
a b

c d

]
=

[
a+2c b+2d

3c−a 3d−b

]

e. T : P2→ R3; T (a+bx+ cx2) = (a− c, 2b, a+ c)

f. T : P2→ R3; T (p) = [p(0), p(1), p(−1)]

Exercise 7.3.7 In each case, show that T is self-inverse,
that is: T−1 = T .

a. T : R4→ R4; T (x, y, z, w) = (x, −y, −z, w)

b. T : R2 → R2; T (x, y) = (ky− x, y), k any fixed
number

c. T : Pn→ Pn; T (p(x)) = p(3− x)

d. T : M22→M22; T (X) = AX where

A = 1
4

[
5 −3
3 −5

]

Exercise 7.3.8 In each case, show that T 6 = 1R4 and so
determine T−1.

a. T : R4→ R4; T (x, y, z, w) = (−x, z, w, y)

b. T : R4→ R4; T (x, y, z, w) = (−y, x− y, z, −w)

Exercise 7.3.9 In each case, show that T is an isomor-
phism by defining T−1 explicitly.

a. T : Pn→ Pn is given by T [p(x)] = p(x+1).

b. T : Mnn →Mnn is given by T (A) = UA where U

is invertible in Mnn.

Exercise 7.3.10 Given linear transformations
V

T−→W
S−→U :

a. If S and T are both one-to-one, show that ST is
one-to-one.

b. If S and T are both onto, show that ST is onto.

Exercise 7.3.11 Let T : V →W be a linear transforma-
tion.

a. If T is one-to-one and T R = T R1 for transforma-
tions R and R1 : U →V , show that R = R1.

b. If T is onto and ST = S1T for transformations S

and S1 : W →U , show that S = S1.

Exercise 7.3.12 Consider the linear transformations
V

T−→W
R−→U .

a. Show that ker T ⊆ ker RT .

b. Show that im RT ⊆ im R.
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Exercise 7.3.13 Let V
T−→U

S−→W be linear transforma-
tions.

a. If ST is one-to-one, show that T is one-to-one and
that dim V ≤ dim U .

b. If ST is onto, show that S is onto and that
dim W ≤ dim U .

Exercise 7.3.14 Let T : V → V be a linear transforma-
tion. Show that T 2 = 1V if and only if T is invertible and
T = T−1.

Exercise 7.3.15 Let N be a nilpotent n× n matrix (that
is, Nk = 0 for some k). Show that T : Mnm → Mnm is
an isomorphism if T (X) = X −NX . [Hint: If X is in
ker T , show that X = NX = N2X = · · · . Then use Theo-
rem 7.3.3.]

Exercise 7.3.16 Let T : V →W be a linear transforma-
tion, and let {e1, . . . , er, er+1, . . . , en} be any basis of V

such that {er+1, . . . , en} is a basis of ker T . Show that
im T ∼= span{e1, . . . , er}. [Hint: See Theorem 7.2.5.]

Exercise 7.3.17 Is every isomorphism T : M22 →M22

given by an invertible matrix U such that T (X) =UX for
all X in M22? Prove your answer.

Exercise 7.3.18 Let Dn denote the space of all func-
tions f from {1, 2, . . . , n} to R (see Exercise 6.3.35). If
T : Dn→ Rn is defined by

T ( f ) = ( f (1), f (2), . . . , f (n)),

show that T is an isomorphism.

Exercise 7.3.19

a. Let V be the vector space of Exercise 6.1.3. Find
an isomorphism T : V → R1.

b. Let V be the vector space of Exercise 6.1.4. Find
an isomorphism T : V → R2.

Exercise 7.3.20 Let V
T−→W

S−→V be linear transforma-
tions such that ST = 1V . If dim V = dim W = n, show
that S = T−1 and T = S−1. [Hint: Exercise 7.3.13 and
Theorem 7.3.3, Theorem 7.3.4, and Theorem 7.3.5.]

Exercise 7.3.21 Let V
T−→W

S−→V be functions such that
T S = 1W and ST = 1V . If T is linear, show that S is also
linear.

Exercise 7.3.22 Let A and B be matrices of size p×m

and n×q. Assume that mn = pq. Define R : Mmn→Mpq

by R(X) = AXB.

a. Show that Mmn
∼= Mpq by comparing dimensions.

b. Show that R is a linear transformation.

c. Show that if R is an isomorphism, then m = p

and n = q. [Hint: Show that T : Mmn → Mpn

given by T (X) = AX and S : Mmn →Mmq given
by S(X) = XB are both one-to-one, and use the
dimension theorem.]

Exercise 7.3.23 Let T : V → V be a linear transforma-
tion such that T 2 = 0 is the zero transformation.

a. If V 6= {0}, show that T cannot be invertible.

b. If R : V →V is defined by R(v) = v+T (v) for all
v in V , show that R is linear and invertible.

Exercise 7.3.24 Let V consist of all sequences
[x0, x1, x2, . . . ) of numbers, and define vector operations

[xo, x1, . . . )+ [y0, y1, . . . ) = [x0 + y0, x1 + y1, . . . )

r[x0, x1, . . . ) = [rx0, rx1, . . . )

a. Show that V is a vector space of infinite dimen-
sion.

b. Define T : V → V and S : V → V by
T [x0, x1, . . . ) = [x1, x2, . . . ) and
S[x0, x1, . . . ) = [0, x0, x1, . . . ). Show that
T S = 1V , so T S is one-to-one and onto, but that T

is not one-to-one and S is not onto.

Exercise 7.3.25 Prove (1) and (2) of Theorem 7.3.4.

Exercise 7.3.26 Define T : Pn→ Pn by
T (p) = p(x)+ xp′(x) for all p in Pn.

a. Show that T is linear.

b. Show that ker T = {0} and conclude that T is an
isomorphism. [Hint: Write p(x) = a0+a1x+ · · ·+
anxn and compare coefficients if p(x) =−xp′(x).]

c. Conclude that each q(x) in Pn has the form
q(x) = p(x)+ xp′(x) for some unique polynomial
p(x).

d. Does this remain valid if T is defined by
T [p(x)] = p(x)− xp′(x)? Explain.
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Exercise 7.3.27 Let T : V →W be a linear transforma-
tion, where V and W are finite dimensional.

a. Show that T is one-to-one if and only if there
exists a linear transformation S : W → V with
ST = 1V . [Hint: If {e1, . . . , en} is a basis of
V and T is one-to-one, show that W has a basis
{T (e1), . . . , T (en), fn+1, . . . , fn+k} and use The-
orem 7.1.2 and Theorem 7.1.3.]

b. Show that T is onto if and only if there exists a
linear transformation S : W → V with T S = 1W .
[Hint: Let {e1, . . . , er, . . . , en} be a basis of
V such that {er+1, . . . , en} is a basis of ker T .
Use Theorem 7.2.5, Theorem 7.1.2 and Theo-
rem 7.1.3.]

Exercise 7.3.28 Let S and T be linear transformations
V →W , where dim V = n and dim W = m.

a. Show that ker S = ker T if and only if T = RS

for some isomorphism R : W → W . [Hint: Let
{e1, . . . , er, . . . , en} be a basis of V such that
{er+1, . . . , en} is a basis of ker S = ker T . Use
Theorem 7.2.5 to extend {S(e1), . . . , S(er)} and
{T (e1), . . . , T (er)} to bases of W .]

b. Show that im S = im T if and only if T = SR

for some isomorphism R : V → V . [Hint: Show
that dim (ker S) = dim (ker T ) and choose bases
{e1, . . . , er, . . . , en} and {f1, . . . , fr, . . . , fn} of V

where {er+1, . . . , en} and {fr+1, . . . , fn} are bases
of ker S and ker T , respectively. If 1≤ i≤ r, show
that S(ei) = T (gi) for some gi in V , and prove that
{g1, . . . , gr, fr+1, . . . , fn} is a basis of V .]

Exercise 7.3.29 If T : V →V is a linear transformation
where dim V = n, show that T ST = T for some isomor-
phism S : V →V . [Hint: Let {e1, . . . , er, er+1, . . . , en}
be as in Theorem 7.2.5. Extend {T (e1), . . . , T (er)} to
a basis of V , and use Theorem 7.3.1, Theorem 7.1.2 and
Theorem 7.1.3.]

Exercise 7.3.30 Let A and B denote m×n matrices. In
each case show that (1) and (2) are equivalent.

a. (1) A and B have the same null space. (2) B = PA

for some invertible m×m matrix P.

b. (1) A and B have the same range. (2) B = AQ for
some invertible n×n matrix Q.

[Hint: Use Exercise 7.3.28.]

7.4 A Theorem about Differential Equations

Differential equations are instrumental in solving a variety of problems throughout science, social science,
and engineering. In this brief section, we will see that the set of solutions of a linear differential equation
(with constant coefficients) is a vector space and we will calculate its dimension. The proof is pure linear
algebra, although the applications are primarily in analysis. However, a key result (Lemma 7.4.3 below)
can be applied much more widely.

We denote the derivative of a function f : R→ R by f ′, and f will be called differentiable if it can
be differentiated any number of times. If f is a differentiable function, the nth derivative f (n) of f is the
result of differentiating n times. Thus f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . , and in general f (n+1) = f (n)′

for each n≥ 0. For small values of n these are often written as f , f ′, f ′′, f ′′′, . . . .

If a, b, and c are numbers, the differential equations

f ′′−a f ′−b f = 0 or f ′′′−a f ′′−b f ′− c f = 0

are said to be of second order and third-order, respectively. In general, an equation

f (n)−an−1 f (n−1)−an−2 f (n−2)−·· ·−a2 f (2)−a1 f (1)−a0 f (0) = 0, ai in R (7.3)
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is called a differential equation of order n. We want to describe all solutions of this equation. Of course
a knowledge of calculus is required.

The set F of all functions R→R is a vector space with operations as described in Example 6.1.7. If f

and g are differentiable, we have ( f +g)′ = f ′+g′ and (a f )′ = a f ′ for all a in R. With this it is a routine
matter to verify that the following set is a subspace of F:

Dn = { f : R→ R | f is differentiable and is a solution to (7.3)}
Our sole objective in this section is to prove

Theorem 7.4.1

The space Dn has dimension n.

As will be clear later, the proof of Theorem 7.4.1 requires that we enlarge Dn somewhat and allow our
differentiable functions to take values in the set C of complex numbers. To do this, we must clarify what
it means for a function f : R→ C to be differentiable. For each real number x write f (x) in terms of its
real and imaginary parts fr(x) and fi(x):

f (x) = fr(x)+ i fi(x)

This produces new functions fr : R → R and fi : R → R, called the real and imaginary parts of f ,
respectively. We say that f is differentiable if both fr and fi are differentiable (as real functions), and we
define the derivative f ′ of f by

f ′ = f ′r + i f ′i (7.4)

We refer to this frequently in what follows.4

With this, write D∞ for the set of all differentiable complex valued functions f : R→ C . This is a
complex vector space using pointwise addition (see Example 6.1.7), and the following scalar multiplica-
tion: For any w in C and f in D∞, we define w f : R→ C by (w f )(x) = w f (x) for all x in R. We will be
working in D∞ for the rest of this section. In particular, consider the following complex subspace of D∞:

D∗n = { f : R→ C | f is a solution to (7.3)}
Clearly, Dn ⊆ D∗n, and our interest in D∗n comes from

Lemma 7.4.1

If dimC(D
∗
n) = n, then dimR(Dn) = n.

Proof. Observe first that if dimC(D
∗
n) = n, then dimR(D

∗
n) = 2n. [In fact, if {g1, . . . , gn} is a C-basis of

D∗n then {g1, . . . , gn, ig1, . . . , ign} is a R-basis of D∗n]. Now observe that the set Dn×Dn of all ordered
pairs ( f , g) with f and g in Dn is a real vector space with componentwise operations. Define

θ : D∗n→ Dn×Dn given by θ( f ) = ( fr, fi) for f in D∗n
4Write |w| for the absolute value of any complex number w. As for functions R→R, we say that limt→0 f (t) = w if, for all

ε > 0 there exists δ > 0 such that | f (t)−w| <∈ whenever |t| < δ . (Note that t represents a real number here.) In particular,
given a real number x, we define the derivative f ′ of a function f : R→ C by f ′(x) = limt→0

{
1
t
[ f (x+ t)− f (x)]

}
and we say

that f is differentiable if f ′(x) exists for all x in R. Then we can prove that f is differentiable if and only if both fr and fi are
differentiable, and that f ′ = f ′r + i f ′i in this case.
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One verifies that θ is onto and one-to-one, and it is R-linear because f → fr and f → fi are both R-linear.
Hence D∗n ∼= Dn×Dn as R-spaces. Since dimR(D

∗
n) is finite, it follows that dimR(Dn) is finite, and we

have
2 dimR(Dn) = dimR(Dn×Dn) = dimR(D

∗
n) = 2n

Hence dimR(Dn) = n, as required.

It follows that to prove Theorem 7.4.1 it suffices to show that dimC(D
∗
n) = n.

There is one function that arises frequently in any discussion of differential equations. Given a complex
number w = a+ ib (where a and b are real), we have ew = ea(cosb+ isinb). The law of exponents,
ewev = ew+v for all w, v in C is easily verified using the formulas for sin(b+b1) and cos(b+b1). If x is a
variable and w = a+ ib is a complex number, define the exponential function ewx by

ewx = eax(cosbx+ isinbx)

Hence ewx is differentiable because its real and imaginary parts are differentiable for all x. Moreover, the
following can be proved using (7.4):

(ewx)′ = wewx

In addition, (7.4) gives the product rule for differentiation:

If f and g are in D∞, then ( f g)′ = f ′g+ f g′

We omit the verifications.

To prove that dimC(D
∗
n) = n, two preliminary results are required. Here is the first.

Lemma 7.4.2

Given f in D∞ and w in C, there exists g in D∞ such that g′−wg = f .

Proof. Define p(x) = f (x)e−wx. Then p is differentiable, whence pr and pi are both differentiable, hence
continuous, and so both have antiderivatives, say pr = q′r and pi = q′i. Then the function q = qr + iqi is in
D∞, and q′ = p by (7.4). Finally define g(x) = q(x)ewx. Then

g′ = q′ewx +qwewx = pewx +w(qewx) = f +wg

by the product rule, as required.

The second preliminary result is important in its own right.

Lemma 7.4.3: Kernel Lemma

Let V be a vector space, and let S and T be linear operators V →V . If S is onto and both ker (S)
and ker (T ) are finite dimensional, then ker (T S) is also finite dimensional and
dim [ker (TS)] = dim [ker (T )]+ dim [ker (S)].

Proof. Let {u1, u2, . . . , um} be a basis of ker (T ) and let {v1, v2, . . . , vn} be a basis of ker (S). Since S

is onto, let ui = S(wi) for some wi in V . It suffices to show that

B = {w1, w2, . . . , wm, v1, v2, . . . , vn}
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is a basis of ker (T S). Note B⊆ ker (T S) because T S(wi) = T (ui) = 0 for each i and T S(v j) = T (0) = 0

for each j.

Spanning. If v is in ker (T S), then S(v) is in ker (T ), say S(v) = ∑riui = ∑riS (wi) = S (∑riwi). It follows
that v−∑riwi is in ker (S) = span{v1, v2, . . . , vn}, proving that v is in span (B).

Independence. Let ∑riwi +∑ t jv j = 0. Applying S, and noting that S(v j) = 0 for each j, yields
0 = ∑riS(wi) = ∑riui. Hence ri = 0 for each i, and so ∑ t jv j = 0. This implies that each t j = 0, and so
proves the independence of B.

Proof of Theorem 7.4.1. By Lemma 7.4.1, it suffices to prove that dimC(D
∗
n) = n. This holds for n = 1

because the proof of Theorem 3.5.1 goes through to show that D∗1 =Cea0x. Hence we proceed by induction
on n. With an eye on equation (7.3), consider the polynomial

p(t) = tn−an−1tn−1−an−2tn−2−·· ·−a2t2−a1t−a0

(called the characteristic polynomial of equation (7.3)). Now define a map D : D∞→ D∞ by D( f ) = f ′

for all f in D∞. Then D is a linear operator, whence p(D) : D∞→ D∞ is also a linear operator. Moreover,
since Dk( f ) = f (k) for each k ≥ 0, equation (7.3) takes the form p(D)( f ) = 0. In other words,

D∗n = ker [p(D)]

By the fundamental theorem of algebra,5 let w be a complex root of p(t), so that p(t)= q(t)(t−w) for some
complex polynomial q(t) of degree n−1. It follows that p(D) = q(D)(D−w1D∞

). Moreover D−w1D∞
is

onto by Lemma 7.4.2, dimC[ker (D−w1D∞)] = 1 by the case n = 1 above, and dimC(ker [q(D)]) = n−1
by induction. Hence Lemma 7.4.3 shows that ker [P(D)] is also finite dimensional and

dimC(ker [p(D)]) = dimC(ker [q(D)])+ dimC(ker [D−w1D∞]) = (n−1)+1 = n.

Since D∗n = ker [p(D)], this completes the induction, and so proves Theorem 7.4.1.

7.5 More on Linear Recurrences6

In Section 3.4 we used diagonalization to study linear recurrences, and gave several examples. We now
apply the theory of vector spaces and linear transformations to study the problem in more generality.

Consider the linear recurrence

xn+2 = 6xn− xn+1 for n≥ 0

If the initial values x0 and x1 are prescribed, this gives a sequence of numbers. For example, if x0 = 1 and
x1 = 1 the sequence continues

x2 = 5, x3 = 1, x4 = 29, x5 =−23, x6 = 197, . . .

5This is the reason for allowing our solutions to (7.3) to be complex valued.
6This section requires only Sections 7.1-7.3.
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as the reader can verify. Clearly, the entire sequence is uniquely determined by the recurrence and the two
initial values. In this section we define a vector space structure on the set of all sequences, and study the
subspace of those sequences that satisfy a particular recurrence.

Sequences will be considered entities in their own right, so it is useful to have a special notation for
them. Let

[xn) denote the sequence x0, x1, x2, . . . , xn, . . .

Example 7.5.1

[n) is the sequence 0, 1, 2, 3, . . .

[n+1) is the sequence 1, 2, 3, 4, . . .

[2n) is the sequence 1, 2, 22, 23, . . .

[(−1)n) is the sequence 1, −1, 1, −1, . . .

[5) is the sequence 5, 5, 5, 5, . . .

Sequences of the form [c) for a fixed number c will be referred to as constant sequences, and those of the
form [λ n), λ some number, are power sequences.

Two sequences are regarded as equal when they are identical:

[xn) = [yn) means xn = yn for all n = 0, 1, 2, . . .

Addition and scalar multiplication of sequences are defined by

[xn)+ [yn) = [xn + yn)

r[xn) = [rxn)

These operations are analogous to the addition and scalar multiplication in Rn, and it is easy to check that
the vector-space axioms are satisfied. The zero vector is the constant sequence [0), and the negative of a
sequence [xn) is given by −[xn) = [−xn).

Now suppose k real numbers r0, r1, . . . , rk−1 are given, and consider the linear recurrence relation

determined by these numbers.

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 (7.5)

When r0 6= 0, we say this recurrence has length k.7 For example, the relation xn+2 = 2xn + xn+1 is of
length 2.

A sequence [xn) is said to satisfy the relation (7.5) if (7.5) holds for all n≥ 0. Let V denote the set of
all sequences that satisfy the relation. In symbols,

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 hold for all n≥ 0}
It is easy to see that the constant sequence [0) lies in V and that V is closed under addition and scalar
multiplication of sequences. Hence V is vector space (being a subspace of the space of all sequences).
The following important observation about V is needed (it was used implicitly earlier): If the first k terms
of two sequences agree, then the sequences are identical. More formally,

7We shall usually assume that r0 6= 0; otherwise, we are essentially dealing with a recurrence of shorter length than k.
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Lemma 7.5.1

Let [xn) and [yn) denote two sequences in V . Then

[xn) = [yn) if and only if x0 = y0, x1 = y1, . . . , xk−1 = yk−1

Proof. If [xn) = [yn) then xn = yn for all n = 0, 1, 2, . . . . Conversely, if xi = yi for all i = 0, 1, . . . , k−1,
use the recurrence (7.5) for n = 0.

xk = r0x0 + r1x1 + · · ·+ rk−1xk−1 = r0y0 + r1y1 + · · ·+ rk−1yk−1 = yk

Next the recurrence for n = 1 establishes xk+1 = yk+1. The process continues to show that xn+k = yn+k

holds for all n≥ 0 by induction on n. Hence [xn) = [yn).

This shows that a sequence in V is completely determined by its first k terms. In particular, given a
k-tuple v = (v0, v1, . . . , vk−1) in Rk, define

T (v) to be the sequence in V whose first k terms are v0, v1, . . . , vk−1

The rest of the sequence T (v) is determined by the recurrence, so T : Rk→ V is a function. In fact, it is
an isomorphism.

Theorem 7.5.1

Given real numbers r0, r1, . . . , rk−1, let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1, for all n≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation (7.5) determined
by r0, r1, . . . , rk−1. Then the function

T : Rk→V

defined above is an isomorphism. In particular:

1. dim V = k.

2. If {v1, . . . , vk} is any basis of Rk, then {T (v1), . . . , T (vk)} is a basis of V .

Proof. (1) and (2) will follow from Theorem 7.3.1 and Theorem 7.3.2 as soon as we show that T is an
isomorphism. Given v and w in Rk, write v = (v0, v1, . . . , vk−1) and w = (w0, w1, . . . , wk−1). The first
k terms of T (v) and T (w) are v0, v1, . . . , vk−1 and w0, w1, . . . , wk−1, respectively, so the first k terms of
T (v)+T (w) are v0 +w0, v1 +w1, . . . , vk−1 +wk−1. Because these terms agree with the first k terms of
T (v+w), Lemma 7.5.1 implies that T (v+w) = T (v)+T (w). The proof that T (rv)+rT (v) is similar, so
T is linear.

Now let [xn) be any sequence in V , and let v = (x0, x1, . . . , xk−1). Then the first k terms of [xn) and
T (v) agree, so T (v) = [xn). Hence T is onto. Finally, if T (v) = [0) is the zero sequence, then the first k

terms of T (v) are all zero (all terms of T (v) are zero!) so v = 0. This means that ker T = {0}, so T is
one-to-one.
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Example 7.5.2

Show that the sequences [1), [n), and [(−1)n) are a basis of the space V of all solutions of the
recurrence

xn+3 =−xn + xn+1 + xn+2

Then find the solution satisfying x0 = 1, x1 = 2, x2 = 5.

Solution. The verifications that these sequences satisfy the recurrence (and hence lie in V ) are left
to the reader. They are a basis because [1) = T (1, 1, 1), [n) = T (0, 1, 2), and
[(−1)n) = T (1, −1, 1); and {(1, 1, 1), (0, 1, 2), (1, −1, 1)} is a basis of R3. Hence the
sequence [xn) in V satisfying x0 = 1, x1 = 2, x2 = 5 is a linear combination of this basis:

[xn) = t1[1)+ t2[n)+ t3[(−1)n)

The nth term is xn = t1 +nt2 +(−1)nt3, so taking n = 0, 1, 2 gives

1= x0 = t1 + 0 + t3
2= x1 = t1 + t2 − t3
5= x2 = t1 + 2t2 + t3

This has the solution t1 = t3 =
1
2 , t2 = 2, so xn =

1
2 +2n+ 1

2(−1)n.

This technique clearly works for any linear recurrence of length k: Simply take your favourite basis
{v1, . . . , vk} of Rk—perhaps the standard basis—and compute T (v1), . . . , T (vk). This is a basis of V all
right, but the nth term of T (vi) is not usually given as an explicit function of n. (The basis in Example 7.5.2
was carefully chosen so that the nth terms of the three sequences were 1, n, and (−1)n, respectively, each
a simple function of n.)

However, it turns out that an explicit basis of V can be given in the general situation. Given the
recurrence (7.5) again:

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

the idea is to look for numbers λ such that the power sequence [λ n) satisfies (7.5). This happens if and
only if

λ n+k = r0λ n + r1λ n+1 + · · ·+ rk−1λ n+k−1

holds for all n≥ 0. This is true just when the case n = 0 holds; that is,

λ k = r0 + r1λ + · · ·+ rk−1λ k−1

The polynomial
p(x) = xk− rk−1xk−1−·· ·− r1x− r0

is called the polynomial associated with the linear recurrence (7.5). Thus every root λ of p(x) provides a
sequence [λ n) satisfying (7.5). If there are k distinct roots, the power sequences provide a basis. Inciden-
tally, if λ = 0, the sequence [λ n) is 1, 0, 0, . . . ; that is, we accept the convention that 00 = 1.
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Theorem 7.5.2

Let r0, r1, . . . , rk−1 be real numbers; let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation determined by
r0, r1, . . . , rk−1; and let

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

denote the polynomial associated with the recurrence relation. Then

1. [λ n) lies in V if and only if λ is a root of p(x).

2. If λ1, λ2, . . . , λk are distinct real roots of p(x), then {[λ n
1 ), [λ

n
2 ), . . . , [λ

n
k )} is a basis of V .

Proof. It remains to prove (2). But [λ n
i ) = T (vi) where vi = (1, λi, λ 2

i , . . . , λ k−1
i ), so (2) follows by

Theorem 7.5.1, provided that (v1, v2, . . . , vn) is a basis of Rk. This is true provided that the matrix with
the vi as its rows 



1 λ1 λ 2
1 · · · λ k−1

1
1 λ2 λ 2

2 · · · λ k−1
2

...
...

...
. . .

...
1 λk λ 2

k · · · λ k−1
k




is invertible. But this is a Vandermonde matrix and so is invertible if the λi are distinct (Theorem 3.2.7).
This proves (2).

Example 7.5.3

Find the solution of xn+2 = 2xn + xn+1 that satisfies x0 = a, x1 = b.

Solution. The associated polynomial is p(x) = x2− x−2 = (x−2)(x+1). The roots are λ1 = 2
and λ2 =−1, so the sequences [2n) and [(−1)n) are a basis for the space of solutions by
Theorem 7.5.2. Hence every solution [xn) is a linear combination

[xn) = t1[2
n)+ t2[(−1)n)

This means that xn = t12n + t2(−1)n holds for n = 0, 1, 2, . . . , so (taking n = 0, 1) x0 = a and
x1 = b give

t1 + t2 = a

2t1− t2 = b

These are easily solved: t1 =
1
3(a+b) and t2 =

1
3(2a−b), so

tn =
1
3 [(a+b)2n+(2a−b)(−1)n]
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The Shift Operator

If p(x) is the polynomial associated with a linear recurrence relation of length k, and if p(x) has k distinct
roots λ1, λ2, . . . , λk, then p(x) factors completely:

p(x) = (x−λ1)(x−λ2) · · ·(x−λk)

Each root λi provides a sequence [λ n
i ) satisfying the recurrence, and they are a basis of V by Theorem 7.5.2.

In this case, each λi has multiplicity 1 as a root of p(x). In general, a root λ has multiplicity m if
p(x) = (x− λ )mq(x), where q(λ ) 6= 0. In this case, there are fewer than k distinct roots and so fewer
than k sequences [λ n) satisfying the recurrence. However, we can still obtain a basis because, if λ has
multiplicity m (and λ 6= 0), it provides m linearly independent sequences that satisfy the recurrence. To
prove this, it is convenient to give another way to describe the space V of all sequences satisfying a given
linear recurrence relation.

Let S denote the vector space of all sequences and define a function

S : S→ S by S[xn) = [xn+1) = [x1, x2, x3, . . .)

S is clearly a linear transformation and is called the shift operator on S. Note that powers of S shift the
sequence further: S2[xn) = S[xn+1) = [xn+2). In general,

Sk[xn) = [xn+k) = [xk, xk+1, . . .) for all k = 0, 1, 2, . . .

But then a linear recurrence relation

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n = 0, 1, . . .

can be written
Sk[xn) = r0[xn)+ r1S[xn)+ · · ·+ rk−1Sk−1[xn) (7.6)

Now let p(x)= xk−rk−1xk−1−·· ·−r1x−r0 denote the polynomial associated with the recurrence relation.
The set L[S, S] of all linear transformations from S to itself is a vector space (verify8) that is closed under
composition. In particular,

p(S) = Sk− rk−1Sk−1−·· ·− r1S− r0

is a linear transformation called the evaluation of p at S. The point is that condition (7.6) can be written
as

p(S){[xn)}= 0

In other words, the space V of all sequences satisfying the recurrence relation is just ker [p(S)]. This is the
first assertion in the following theorem.

Theorem 7.5.3

Let r0, r1, . . . , rk−1 be real numbers, and let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

8See Exercises 9.1.19 and 9.1.20.
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denote the space of all sequences satisfying the linear recurrence relation determined by
r0, r1, . . . , rk−1. Let

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

denote the corresponding polynomial. Then:

1. V = ker [p(S)], where S is the shift operator.

2. If p(x) = (x−λ )mq(x), where λ 6= 0 and m > 1, then the sequences

{[λ n), [nλ n), [n2λ n), . . . , [nm−1λ n)}

all lie in V and are linearly independent.

Proof (Sketch). It remains to prove (2). If
(

n
k

)
= n(n−1)···(n−k+1)

k! denotes the binomial coefficient, the idea
is to use (1) to show that the sequence sk =

[(
n
k

)
λ n
)

is a solution for each k = 0, 1, . . . , m− 1. Then
(2) of Theorem 7.5.1 can be applied to show that {s0, s1, . . . , sm−1} is linearly independent. Finally, the
sequences tk = [nkλ n), k = 0, 1, . . . , m−1, in the present theorem can be given by tk = ∑m−1

j=0 ak js j, where

A =
[
ai j

]
is an invertible matrix. Then (2) follows. We omit the details.

This theorem combines with Theorem 7.5.2 to give a basis for V when p(x) has k real roots (not neces-
sarily distinct) none of which is zero. This last requirement means r0 6= 0, a condition that is unimportant
in practice (see Remark 1 below).

Theorem 7.5.4

Let r0, r1, . . . , rk−1 be real numbers with r0 6= 0; let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

denote the space of all sequences satisfying the linear recurrence relation of length k determined by
r0, . . . , rk−1; and assume that the polynomial

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

factors completely as
p(x) = (x−λ1)

m1(x−λ2)
m2 · · ·(x−λp)

mp

where λ1, λ2, . . . , λp are distinct real numbers and each mi ≥ 1. Then λi 6= 0 for each i, and

[
λ n

1

)
,
[
nλ n

1

)
, . . . ,

[
nm1−1λ n

1

)
[
λ n

2

)
,
[
nλ n

2

)
, . . . ,

[
nm2−1λ n

2

)

...
[
λ n

p

)
,
[
nλ n

p

)
, . . . ,

[
nmp−1λ n

p

)

is a basis of V .
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Proof. There are m1 +m2 + · · ·+mp = k sequences in all so, because dim V = k, it suffices to show that
they are linearly independent. The assumption that r0 6= 0, implies that 0 is not a root of p(x). Hence each
λi 6= 0, so {[λ n

i ), [nλ n
i ), . . . , [nmi−1λ n

i )} is linearly independent by Theorem 7.5.3. The proof that the
whole set of sequences is linearly independent is omitted.

Example 7.5.4

Find a basis for the space V of all sequences [xn) satisfying

xn+3 =−9xn−3xn+1 +5xn+2

Solution. The associated polynomial is

p(x) = x3−5x2 +3x+9 = (x−3)2(x+1)

Hence 3 is a double root, so [3n) and [n3n) both lie in V by Theorem 7.5.3 (the reader should verify
this). Similarly, λ =−1 is a root of multiplicity 1, so [(−1)n) lies in V . Hence
{[3n), [n3n), [(−1)n)} is a basis by Theorem 7.5.4.

Remark 1

If r0 = 0 [so p(x) has 0 as a root], the recurrence reduces to one of shorter length. For example, consider

xn+4 = 0xn +0xn+1 +3xn+2 +2xn+3 (7.7)

If we set yn = xn+2, this recurrence becomes yn+2 = 3yn + 2yn+1, which has solutions [3n) and [(−1)n).
These give the following solution to (7.5):

[
0, 0, 1, 3, 32, . . .

)
[
0, 0, 1, −1, (−1)2, . . .

)

In addition, it is easy to verify that

[1, 0, 0, 0, 0, . . .)

[0, 1, 0, 0, 0, . . .)

are also solutions to (7.7). The space of all solutions of (7.5) has dimension 4 (Theorem 7.5.1), so these
sequences are a basis. This technique works whenever r0 = 0.

Remark 2

Theorem 7.5.4 completely describes the space V of sequences that satisfy a linear recurrence relation for
which the associated polynomial p(x) has all real roots. However, in many cases of interest, p(x) has
complex roots that are not real. If p(µ) = 0, µ complex, then p(µ) = 0 too (µ the conjugate), and the
main observation is that [µn +µn) and [i(µn+µn)) are real solutions. Analogs of the preceding theorems
can then be proved.
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Exercises for 7.5

Exercise 7.5.1 Find a basis for the space V of sequences
[xn) satisfying the following recurrences, and use it to
find the sequence satisfying x0 = 1, x1 = 2, x2 = 1.

a. xn+3 =−2xn + xn+1 +2xn+2

b. xn+3 =−6xn +7xn+1

c. xn+3 =−36xn +7xn+2

Exercise 7.5.2 In each case, find a basis for the space V

of all sequences [xn) satisfying the recurrence, and use it
to find xn if x0 = 1, x1 =−1, and x2 = 1.

a. xn+3 = xn + xn+1− xn+2

b. xn+3 =−2xn +3xn+1

c. xn+3 =−4xn +3xn+2

d. xn+3 = xn−3xn+1 +3xn+2

e. xn+3 = 8xn−12xn+1 +6xn+2

Exercise 7.5.3 Find a basis for the space V of sequences
[xn) satisfying each of the following recurrences.

a. xn+2 =−a2xn +2axn+1, a 6= 0

b. xn+2 =−abxn +(a+b)xn+1, (a 6= b)

Exercise 7.5.4 In each case, find a basis of V .

a. V = {[xn) | xn+4 = 2xn+2− xn+3, for n≥ 0}

b. V = {[xn) | xn+4 =−xn+2 +2xn+3, for n≥ 0}

Exercise 7.5.5 Suppose that [xn) satisfies a linear recur-
rence relation of length k. If {e0 = (1, 0, . . . , 0),
e1 = (0, 1, . . . , 0), . . . , ek−1 = (0, 0, . . . , 1)} is the stan-
dard basis of Rk, show that

xn = x0T (e0)+ x1T (e1)+ · · ·+ xk−1T (ek−1)

holds for all n≥ k. (Here T is as in Theorem 7.5.1.)

Exercise 7.5.6 Show that the shift operator S is onto but
not one-to-one. Find ker S.

Exercise 7.5.7 Find a basis for the space V of all se-
quences [xn) satisfying xn+2 =−xn.




